ENGINEERING PHYSICS

 $UNI - 4$

LASERS

Feedback/corrections: vibha@pesu.pes.edu

LASER

Einsten's idea

- ✓ • Light Amplification by stimulated Emission of Radiation
- e took ⁿ⁵⁰ years to design MASER (microwave)
- . Only then, LASER (gas laser)

Radiation Interacting with Matter

-
- ° In thermal equilibrium, 3 processes . .

④ spontaneous emission

homework

- · coherent, monochromatic
- · if the excited states have longer lifetimes of the order
- . Will not spontaneously de-excite, requires photon of
energy ε = E2-E, =h2 in vicinity to stimulate emission

Einstein's Energy Density Expression-Einstein Coefficients

Let us consider an atomic system with only 2 energy levels, ϵ_1 and ϵ_2

Let N_1 and N_2 be the populations of E_1 and E_2

Let us supply energy density u_p to the system Cradiation)

under normal conditions, $N_1 > N_2$

d) Induced Absorption

rate of induced & is no .of atoms in level ¹ (ND absorption $\overline{\omega}$ (ii) energy density (ν_{ν})

$$
\propto N_1 V_{\nu}
$$

$$
R_{\text{abs}} = B_{12} N_1 V_2
$$
 (1)

where B_{12} is called Einsten's coefficient of induced absorption

(2) Spontaneous Emission

where A₂₁ is called Einsten's coefficient of spontaneous emission

Photons are emitted in random directions

^⑨ Stimulated emission pertobation teary

when a photon of energy, $hv = E_2 - E$, is in the vicinity of an excited atom LE2), it is vulnerable to de-excitation

It de-excites and emits a photon of ε =hu 10^{-3} 0 $\rightarrow 0$ ^① ⁴ ② photons are \int \sim $\frac{6}{9}$ perfectly coherent de-exute
0 ~
0 ~ Cphase, D,E, K, dir same) chain rxn occurs

(if the energy state is a metastable state)

rate of stimulated α is no of atoms in level 2 (N_{ν})
emission (ii) energy density (N_{ν}) (iv) energy density (U_v)

 $\alpha \mid N_2 \cup \nu$

$= B_{21} N_{2}V_{\nu}$ - $-$ (3)

where B₂₁ is called Einsten's coefficient of stimulated emission

At thermal equilibrium

rate of absorption ⁼ rate of emission

$$
B_{12}N_1V_1 = B_{21}N_2V_1 + A_{21}N_2
$$

$$
V_{\nu} = \frac{A_{21} N_{2}}{(B_{12} N_{1} - B_{21} N_{2})}
$$

$$
V_{\nu} = \frac{A_{21}N_1}{B_{21}N_2 \left(\frac{B_{12}N_1}{B_{21}N_2}\right)} = \frac{A_{21}/B_{21}}{(B_{2}/B_{21})\frac{N_1}{N_2}-1}
$$

Boltzmann equation

$$
\frac{N_1}{N_2} = e^{\frac{C_1 - C_1}{k_1}}
$$

compare Einstein's energy density expression with Planue's

Einstein's expression

$$
V_{\nu} = \frac{\left(\frac{A_{\nu}}{B_{\nu}}\right)}{\left(\frac{B_{1\lambda}}{B_{\nu}}\right)e^{\frac{h\nu}{h\lambda}}-1}
$$

Planck's expression

$$
V_{\mathcal{Y}} = \frac{8 \pi h \nu^3}{c^3} \left(\frac{1}{e^{h\mathcal{Y}_{kT}-1}} \right)
$$

 $\frac{B_{12}}{B_{21}} = 1$

$$
B_{12} = B_{21} = B
$$

Probability of rate of induced absurption is equal to
probability of rate of stimulated absurption.

$$
A_{21} = A \qquad , \qquad A \propto \frac{1}{\gamma}
$$

 $\frac{A}{B} = \frac{\theta \pi h v^3}{c^3}$

Probability of rate of absorption a v3

A & B are called Einstein coefficients

^Q: An emission system has 2 levels giving raise to an emission $A = 546.1$ nm (green). If the population of the lower state is 4×10²² at 600k, estimate the population of higher energy state

$$
\frac{N_1}{N_2} = e^{\frac{h\nu}{kT}} = e^{\frac{hc}{\lambda kT}} = e^{43.91}
$$

$$
N_2 = 3403.3
$$

^O: the ratio of population of higher energy state to lower energy state is 5×10^{-19} at $T=4000k$ Find emission a and $\frac{A}{B}$ homework: $\frac{N_2}{N_1} = 5 \times 10$ - 19 = e - ∻
स्थ doubt h he ? hap to du $\frac{h}{\lambda kT}$ = 42.1397 A ⁼ 853.6 NM $v= 3.512 \times 10^{14}$ $\frac{A}{B} = \frac{8 \pi h v^3}{c^2}$ $= 2.68 \times 10^{-14}$

9: A hypothetical atom has uniformly separated energy levels
at a separation of 1.2eV Find the ratio of no of atoms in
7m excited state to that of the 5th excited state at 300k

$$
\frac{N_{\epsilon}}{N_{6}} = e^{\frac{2h\nu}{kT}} = e^{\frac{2\times1.2eV}{kT}}
$$

$$
\frac{N_e}{N_e} = 4.81 \times 10^{-41} \quad (5.21 \times 10^{-4})
$$

8: If R. = sate of stimulated emission and R2 = rate of spontaneous emission between 2 energy levels, then show that

 $\frac{8\pi\sqrt{3}}{6^{3}}\left(\frac{1}{e^{h\sqrt{4t-1}}}\right)\left(\frac{R}{R_{1}}\right)=\frac{8\pi\sqrt{3}}{6^{3}}$

 $\frac{hv}{hf} = \frac{hc}{\lambda kT} = Im(\frac{R_2}{R_1} + 1)$

$$
\lambda = \frac{hc}{k\Gamma \ln(\frac{R_{2}}{R_{1}}+1)}
$$

Principle of LASER

Population inversion - making higher levels more

Acheive by pumping Cproviding external energy)

Pumping Mechanisms

- 1. Optical solid-state lasers Cruby laser)
- 2 Electrical gas lasers
- 3. Forward-biasing
4. Chemical
-
- s- Nuclear

Condition: $N_2 > N_1$

$$
\frac{N_{L}}{N} = e^{-\frac{(\epsilon_{2}-\epsilon_{1})}{kT}} > 1 \Rightarrow \frac{-(\epsilon_{2}-\epsilon_{1})}{kT} > 0
$$

- T should be -ve => not possible
- ... not possible to construct laser with 2 levels
- 3-Level Laser System

 AL_1D_2 $\overline{\mathsf{C}}$ supports supports abtriptism emission non-radiative transition

 $E_{2}-E_{3}<< E_{2}-E_{1}$

Transitions from Ez to Ez is very fast and therefore nansmins non ez TB ez is

$N_3 > N_1 \Rightarrow$ population inversion achieved

If a photon with ^E $=$ ε ₃- ε ₁ if a photon with ε = ε ₃- ε , = hv is spontaneously
emitted from ε ₃, stimulated emission can occur clased transition)

uses optical pumping cxe flashtube)

wife finishtube

requires heavy pumping (population inversion hard to

Ground state E , common to both absorption and emission processes

Ground state gets depleted quickly

Discontinuous stimulated emission and pumping in 3level lasers

creates pulse laser

4-Level Laser System

Gas Laser CHe-Ne, CO₂-N₂-He)

Electrical pumping Cinput energy is continuous)

Continuous lasers

Transition from E_2 to E_3 is non-radiative Csmall energy gapi

If a photon of $E = E_2 - E_4 = hy$ is spontaneously emitted,
stimulated emicsion starts claser transition)

Transition from ϵ_4 to ϵ_1 should be non-radiative

me absorption and emission processes are completely

 N_1 replenished => allows for continuous pumping and
 N_2 always => N_4 Cpopulation inversion)

Designing a Laser

1) Active Medium
2) Pumping Cexternal energy)
3) Resohant Cavity

ACTIVE MEDIUM

- · Consists of active material, which supports population
inversion (metastable state)
- . For the-Ne LASER, active species are the and Ne
- For ω_2 LATER, active species are ω_2 , N_2 and the

PUMPING

- · Providing external energy based in type of LASER
designed
- · Pumping mechanisms can be electrical (gas), optical
(solid state) etc.

- First photon that is emitted is spontaneous ^Crandom direction)
- Pair of mirrors provide optical feedback (part of output fed as input)
- optical feedback is necessary for sustained, amplified optical feedback is necessary for sustained, amplified
stimulated emission (gain $\propto e^{k}$ where k is the distance
travelled by the photon)
- Only harmonic waves can maintain constant phase (others die out)

L= $\frac{mn}{2}$ - resonant condition

n-congitudinal mode number

• Length of cavity should be properly designed

Losses in Laser Beam Intensity

- 1. Reflection at the mirror al reflectivity \sim 85%.
- ^a. Absorption / scattering due to impurities

threshold Round Trip Gain

Minimum gain for constant output

Intensity of ^a beam

$$
1 = I_0 e^{(9-\alpha)}
$$

 $1, \longrightarrow 1$ trip creftection at M_2 :

$$
1_{L} = R_{2}I_{1}
$$

= $R_{2}I_{0}e^{(q-\alpha)L}$

$$
T_{2} \longrightarrow T_{3} \text{ trip} (L \text{ to } 0):
$$
\n
$$
T_{3} = T_{2}e^{(g-\alpha)L}
$$
\n
$$
= R_{2}T_{0}e^{(g-\alpha)L}
$$

 $I_3 \longrightarrow I_4$ Creflection at M_1):

$$
I_{4} = R_1 I_3
$$

= R_1 R_2 I_0 e^{(9-\kappa)2L}

 $\overline{\mathbf{I}}$

For Gain

$$
\frac{\text{output}}{\text{input}} = \frac{I_u}{I_0} \ge
$$

For Minimum (Threshold) Gain

$$
\frac{I_u}{I_0} = 1
$$
 (constant 0/P)

A The ratio of populations of 2 energy levels is 1.5 x 10³⁰
The upper level corresponds to metastable state Find λ of
light emitted at 330k.

$$
\frac{N_{L}}{N_{L}} = e^{\frac{h\nu}{kT}}
$$
\n
$$
\frac{N_{L}}{N_{I}} = e^{-\frac{h\nu}{kT}} = e^{-\frac{hC}{kT\lambda}}
$$
\n
$$
Im(1.5 \times 10^{-30}) = \frac{hc}{kT\lambda}
$$

Properties of LASER

- Properties of a photon
- wavelength
- phase
- direction $\vert \mathbf{x} \vert$
	-
	-
	-
	- 1. Highly monochromanc Cwavelength)

$$
\begin{array}{c|c}\n\bullet & \bullet & \bullet & \bullet \\
\hline\n\bullet & \bullet & \bullet & \bullet \\
\hline\n\end{array}
$$

$$
\epsilon_{\rm i}
$$

Uncertainty in time spent by e⁻ is metastable state is
in the srder of I crelaxation time)

$$
\begin{array}{c|c}\n\text{M} & \text{C} \\
\text{uncertality} & \text{C}E & \sim E \\
\hline\n\text{in energy} & \text{A}E & \text{C} \\
\text{of photon} & \text{A}E & \text{C}\n\end{array}
$$

In a spontaneously emitting system

$$
\begin{array}{c}\n\tau & \sim 10^{-9} \text{s} \\
\Delta t & \sim 10^{-9} \text{s}\n\end{array}
$$

$$
\frac{\Delta E}{d\tau}
$$

$$
\Delta \epsilon = |\Delta \left(\frac{hc}{\lambda} \right)| = |\frac{hc}{\lambda^2}| \Delta \lambda
$$

$$
\Delta\lambda_{\text{st}} = \frac{\lambda^2}{4\pi c} \times 10^9
$$

In a stimulated emission system

$$
\begin{array}{c}\n\chi \sim 10^{-2} \\
\hline\n\lambda t \sim 10^{-3} \\
\hline\n\end{array}
$$

$$
\Delta \epsilon = \frac{h}{4\pi \tau} = \frac{h}{4n} \times 10^4
$$

$$
\Delta E = \frac{hc}{\lambda^2} \Delta \lambda_{sp}
$$

$$
\Delta\lambda_{sp} = \frac{\lambda^2}{4\pi c} \times 10^3
$$

Ratio of $\Delta\lambda_{\text{SP}}$ to $\Delta\lambda_{\text{SE}}$

$$
\frac{\Delta\lambda_{sp}}{\Delta\lambda_{st}} \sim 10^{6}
$$

$$
\Delta\lambda_{st} \sim 10^{-6} \Delta\lambda_{sp}
$$

The spread in a due to stimulated photon is at least
a million times smaller than that of a spontaneously emitted photon

 $\Delta \nu = \frac{c}{\lambda^2} \Delta \lambda$

- $\Delta\lambda_{\rm st}$ + o ; there is a finite line width
- LASER systems are highly monochromatic
- No emitting process is truly monochromatic (for more than a single photon)

reasons for spread in wavelength

- I-uncertainty principle
- 2. Spectral broadening due to Doppler effect
	- sources are moving
	- movement of atoms and molecules inside the cavity
	- instantaneous ^T of gas molecules could be very high

3. Energies of transitions not fully discrete; small bands

<u>a. High coherence Cphase correlation between photons</u>)

. if interference pattern is well-defined Csharp dark fringes) , phase correlation is good coherence)

(a) Temporal coherence

• phase is periodic at the same point

$$
y(x, t_0+1) - y(x, t_0) =
$$
Contentant

- correlation between phase at one time and phase correlation between phase at one time and p
at another time for the same point (constant)
- source not 100% monochromatic; there is a limit to temporal coherence
Colorana lissa et de la contration de la contration
- temporal coherence
Coherence time $\tau_c = \frac{1}{\Delta\nu}$ ($\Delta\nu = \frac{c}{\lambda^2} \Delta\lambda$)
- For truly monochromatic sources, $\chi_c \infty$ as $\Delta\nu$ = σ C phase correlation holds true for an infinite amount of time)
- If the spread in ^V is more , a common period can be found only for ^a short amount of time
- As time increases , phase diff. changes
- . Coherence length: largest distance for which interference is well-defined

$$
l_c = \tilde{l}_c c
$$

• Few kms for LASERs CY_{c} is μs

(b) Spatial coherence

• Phase difference between two points in space of a wave front is constant over any time t =

phase diff b/w $A \in B$

A

- Two different beams from different atom sources are spatially incoherent
- \cdot Limit of AB (max) \rightarrow coherence width

of AB (max)
$$
\rightarrow
$$
 coherence
\n $\omega_c \times \frac{\lambda}{\pi \omega_o}$ $\frac{1}{\omega} \times \frac{\lambda}{\theta}$

- Highly coherent source
- For holograms , interference patterns used
- Interference patterns used for encoding information
- 3- Directionality

Interference patterns used for encoding information		
echonality	tan $\theta/2 = \frac{\omega}{2k} \approx \frac{\theta}{a}$	
ω , 1 0.1 0	θ	tan $\theta/2 = \frac{\omega}{2k} \approx \frac{\theta}{a}$
0 - \omega	ω	
0 order of milliradians	$\theta = \frac{\lambda}{a}$	

 $\pi\omega_{\alpha}$

4 Intensity

- contribution of mono chromaticity, coherence and low divergence
- high intensity beam for low power
- 5mW laser over diameter of 1mm is comparable to sunlight (should not directly view LASER)
- look up ^Q switched lasers

TYPES OF LASERS

- ¹ . Atomic LASER
	- transitions between e energy levels

2. Molecular LASER

transitions between molecular energy states

s. Semiconductor LASER

transitions between VB and CB

Atomic LASER - He-Ne LASER System

- Second LASER ever built (first Ruby)
- · Emission: 632.8 nm Cred)
- ← Four level laser , continuous

- ° Evacuated glass tube
- · I torr pressure
- \cdot He \leq 10:1 partial pressure \approx 10:1 ratio of atoms
- · Brewster windows! polarise and absorb IR
-
- Fast-moving et in' gas
• Pumping mechanism: electron discharge
- $\sim 10 \text{ mW}$ power

Energy Level Diagram

- · Energy levels are a levels
- . Any state with $z > 10^{-8}$ c is metastable

Collision of 1 kind

Collision of 1 kind

- Energies of Qs and 3s energy States in Ne very close to energies of ²³⁵ and ²'s States of He
- He atoms excited so that Ne higher States can be populated populated
• For red laser, $3s_2 \longrightarrow a p_q$ of Ne (632.8 nm)
-
- For red laser, 3s2 \longrightarrow ap₄ of Ne (632.8 nm)
3s2 \longrightarrow 2p₄ is strongest transition (3.39)µm most seen)
and 2s2 \longrightarrow 2p₄ strong (1.152,µm)
- Brewster windows absorbs some FR ^Creduction in output by 40-50 $/$.)
- . CH4 gas absorbs more SR cadded in small amounts
- To depopulate Is quickly, tube is made narrow to increase probability of collision with walls of tube
- ° Air cooling system ; no need water

why is He Added?

- Ne is active species , not He
- He is added to act as buffer ca's and as act as virtual metastable states for population inversion in Ne)
- . If e^{-x} collide with Ne, most favourable transition is to Is , not 28 and 3s to 1s, not as and 3s
• Merefore, collision of I kind required
-

Molecular LASER- W2 LASER system

- . Very powerful laser Ccan cut through steel)
- · transitions between molecular vibrational states of a molecule
- · from few w to kw cused in heavy-evergy industries)

$0 = C = 0$

3-mass, 2-spring system Cmolecular spectroscopy)

- 3 Types of Vibrating Modes
	- Purely symmetric Symmetric stretch
		- 100 I excited state $0 = c = o$ 200 I excited state

n OO I

- $\circ = \circ$
	-
- Asymmetric strech
- $0 \neq c = 0$
	- $0 = c \rightleftharpoons o$

000

- I excited state 001 II excited state 002
-

. N2 used for virtual metastable states

- \cdot 001 of 10, similar to 100 of N_2
- . 10.6µm main emission
- · He used to de-excite olo state of co_z as olo is unfortunately metastable
- Co2 molecules collide with He atoms to go from ⁰¹⁰ Usending) to ⁰⁰⁰ and increase KE of He
- · Lots of heat released, water for cooling
- · Ratio of N_a : Co_a = 2:1 (more N_a)
- Mirrors have to withstand high temp ; made of micros nave to withstand high temp; in
- Relevant for industry

Semiconductor LASERS

-
- · Very efficient -low power
· Beam quality not great
- · si, be cannot be used Cindirect band gap sc)

Indirect Band Gap SC

Direct Band Gap sc

K

light emission not possible
as there is a large Ak by photons.

happens through collisions

band gap not in visible

AK is small

transition can give out radiation

② HOMO Junction LASER

VB

- GaAs p n
- \cdot Heavily doped sc diode \Rightarrow thin depletion region
- Fermi level of n type is in CB and Fermi level of ^p type in VB
- spontaneous emission ^C LED) at low currents and stimulated at excessive FB current

2. Energy pump

excessive FB current

- 3. cavity
- needs mirrors $\frac{1}{\sqrt{1-\frac{1}{1-\$ / • $\frac{1}{\sqrt{1-\frac{1}{2}}}$ ail
directions $\begin{array}{c|c}\n\hline\n\end{array}$
	- · sc properly cleaved in direction -> reflectivity of crystal
	- · Front q back reflective, others rough
	- L= ባን $\frac{1}{2}$

Operating conditions

- •
- .
• Very high I required
• Very low temperatures
- \cdot At $T>40k$, $1=10A$, $10MJ$ LASER
- Not very practical

Drawbacks

- . et, n⁺ conc in active layer is very low
- photons lost ; all directions

1 Hetero Junction LASER

-
- · fixed problems of homo
· multilayered heterogunction (manylayers)
- · AlbaAs doped GaAs with M (higher Eg)
- · at doped at 'Ga sites

-
- · GaAs has lower band gay
· e in cBof n and ht in VB of p

1 Charge confinement

- · In normal sc diode, charges are diffused and recombination not nécessarily achieved
- · Artificial population inversion in the active layer
- · High concentrations of e^- and h^+ in active layer,
altowing for recombination in FB and stimulated
photon emission

a Photon confinement

· MhaAs has a lower refractive index than GaAs

. Similar kind of tir occurs in Hetero junction LASER; Layer in which all photons are going to be contained

Operating conditions

- · room temperature
- \cdot 1500 A $\omega\pi^2$ to 600 A $\omega\pi^2$
- · 5mW-10mW LASER bystem
- $a:$ The ratio of populations of upper excited state to lower energy state of a system at 300K is found
to be 1.2×10^{-19} . Find λ of radiation emitted and energy density. $\frac{N_1}{N_2}$ = $e^{\frac{hv}{hT}}$ $\frac{N_2}{N_1} = e^{-\frac{hc}{\lambda kT}}$ $-m(2 \times 10^{-19}) = \frac{hc}{\lambda k(300)}$ 248377792 $X10^{-14}$ λ = 1.10 μ m $R \mid B$ $U_{\nu} = \frac{8 \pi h v^3}{c^3} \left(\frac{1}{e^{\frac{h \nu}{hT}} - 1} \right)$ $V_v = \frac{8 \pi h}{\lambda^3} \left(\frac{1}{\frac{1}{12 \pi h^2}} - 1 \right)$ $\lambda = \frac{c}{\eta}$ U_2 = 1.498 $\times10^{-33}$ Jsm⁻³

^A: ^A laser emission from a certain laser has an output power of 10 mW . $\lambda = 632.8 \text{ nm}$, find rate of emission of stimulated photons.

emissions per see

 10×10^{-3} = $\int x h c$ 632.8hm

$$
T = 3.19 \times 10^{16} \text{ s}^{-1}
$$

^d: ^A pulsed laser has a power of 1mW and lasts for 10 ns. If no of photons emitted is 3.491×10^7 , $\lambda = ?$

 λ

power rate x he - -

$$
\frac{1}{10} = \frac{1}{10} = \frac{1}{10} = 3.491 \times hc \times 10^{7}
$$
\n
$$
10^{-3} = 3.491 \times hc \times 10^{7}
$$
\n
$$
\times 10 \times 10^{7}
$$

 $\lambda = 693$ nm

^Q : find the ratio of the rate of stimulated emission to the rate of spontaneous emission for ^a system emitting a wavelength of 632.8 nm at 300k.

 R_1 = rate of stimulated $R_1 =$ rate of spontaneous
 $\lambda = 632.8$ nm $T = 300K$

 $Q \cdot B_{10} = 2.7 \times 10^{19} \text{ m}^3/\text{N} \cdot \text{s}^3$ for a particular atom, find the lifetime of the l to ⁰ transition at (a) ⁵⁵⁰ nm Cb) ⁵⁵ nm

rate of
emission

$$
Z \approx \frac{1}{A}
$$

$$
\frac{A_{10}}{B_{10}} = \frac{8 \pi h}{\lambda^3}
$$

$$
\dot{\theta}_{10} = 2.7 \times 10^6 \text{ m}^3/\text{W} \cdot \text{s}^3
$$

$$
\tau
$$
 = 3.7 × 10⁻¹ s

$$
\tau = 370 \text{ ns}
$$

A

 $CD = A_{10} = 2.7 \times 10^{-9}$

 $\overline{\left(\right. }%$

&

$$
2 = 3.7 \times 10^{-1} = 0.37
$$
ns

^O: the energy levels in a 2-level atom are separated by α . There are 3×10^{16} atoms in the upper level and 1.7×10" atoms in the lower level . Coefficient of stimulated $emission \leq 3.2 \times 10^5$ m³/Ws³ and the spectral radiance is 4 mm^{-2} Hz. Calculate rate of stimulated emission.

$$
N_2 = 3 \times 10^{18}
$$
 $N_1 > 1.7 \times 10^{18}$ $h\nu = 2 eV$

 U_{p} = 4 $Wm^{2}s^{-1}$ $B = 3.2 \times 10^5 \text{ m}^3/\text{Ns}^3$

